Search results for "Local time"

showing 6 items of 6 documents

Thin Points of Brownian Motion Intersection Local Times

2005

Let \(\ell \) be the projected intersection local time of two independent Brownian paths in \(\mathbb{R}^d \) for d = 2, 3. We determine the lower tail of the random variable \(\ell \)(B(0, 1)), where B(0, 1) is the unit ball. The answer is given in terms of intersection exponents, which are explicitly known in the case of planar Brownian motion. We use this result to obtain the multifractal spectrum, or spectrum of thin points, for the intersection local times.

CombinatoricsUnit spherePhysicssymbols.namesakeIntersectionLocal timeSpectrum (functional analysis)symbolsHausdorff measureWiener sausageTopologyRandom variableBrownian motion
researchProduct

Representation of Strongly Stationary Stochastic Processes

1993

A generalization of the orthogonality conditions for a stochastic process to represent strongly stationary processes up to a fixed order is presented. The particular case of non-normal delta correlated processes, and the probabilistic characterization of linear systems subjected to strongly stationary stochastic processes are also discussed.

Continuous-time stochastic processMathematical optimizationStochastic processGeneralizationMechanical EngineeringLinear systemStationary sequenceCondensed Matter PhysicsOrthogonalityMechanics of MaterialsLocal timeStatistical physicsGauss–Markov processMathematicsJournal of Applied Mechanics
researchProduct

Disorder relevance for the random walk pinning model in dimension 3

2011

We study the continuous time version of the random walk pinning model, where conditioned on a continuous time random walk Y on Z^d with jump rate \rho>0, which plays the role of disorder, the law up to time t of a second independent random walk X with jump rate 1 is Gibbs transformed with weight e^{\beta L_t(X,Y)}, where L_t(X,Y) is the collision local time between X and Y up to time t. As the inverse temperature \beta varies, the model undergoes a localization-delocalization transition at some critical \beta_c>=0. A natural question is whether or not there is disorder relevance, namely whether or not \beta_c differs from the critical point \beta_c^{ann} for the annealed model. In Birkner a…

Statistics and Probability60K35 82B4482B44Probability (math.PR)Random mediaGeometryMarginal disorderFractional moment methodMean estimationMathematics::Probability60K35Local limit theoremFOS: MathematicsCollision local timeDisordered pinning modelsStatistics Probability and UncertaintyRandom walksHumanitiesRenewal processes with infinite meanMathematics - ProbabilityMathematicsAnnales de l'Institut Henri Poincaré, Probabilités et Statistiques
researchProduct

Large systems of path-repellent Brownian motions in a trap at positive temperature

2006

We study a model of $ N $ mutually repellent Brownian motions under confinement to stay in some bounded region of space. Our model is defined in terms of a transformed path measure under a trap Hamiltonian, which prevents the motions from escaping to infinity, and a pair-interaction Hamiltonian, which imposes a repellency of the $N$ paths. In fact, this interaction is an $N$-dependent regularisation of the Brownian intersection local times, an object which is of independent interest in the theory of stochastic processes. The time horizon (interpreted as the inverse temperature) is kept fixed. We analyse the model for diverging number of Brownian motions in terms of a large deviation princip…

Statistics and ProbabilityFOS: Physical scienceslarge deviationssymbols.namesakeQuantum systemFOS: MathematicsGross-Pitaevskii formula60J6560F10; 60J65; 82B10; 82B26Brownian motionMathematical PhysicsEnergy functionalMathematicsInteracting Brownian motionsStochastic process82B10Mathematical analysisProbability (math.PR)Brownian excursionMathematical Physics (math-ph)Brownian intersection local timessymbolsoccupation measure82B26Large deviations theoryStatistics Probability and UncertaintyHamiltonian (quantum mechanics)Rate functionMathematics - Probability60F10
researchProduct

Rough linear PDE's with discontinuous coefficients - existence of solutions via regularization by fractional Brownian motion

2020

We consider two related linear PDE's perturbed by a fractional Brownian motion. We allow the drift to be discontinuous, in which case the corresponding deterministic equation is ill-posed. However, the noise will be shown to have a regularizing effect on the equations in the sense that we can prove existence of solutions for almost all paths of the fractional Brownian motion.

Statistics and ProbabilityFractional Brownian motion010102 general mathematicsMathematical analysisProbability (math.PR)fractional Brownian motionlocal times01 natural sciencesRegularization (mathematics)VDP::Matematikk og Naturvitenskap: 400::Matematikk: 410010104 statistics & probabilityDeterministic equation60H05FOS: Mathematics60H1560J5560H1060G220101 mathematicsStatistics Probability and Uncertaintystochastic PDEsrough pathsregularization by noiseMathematics - ProbabilityMathematics
researchProduct

A new stochastic representation for the decay from a metastable state

2002

Abstract We show that a stochastic process on a complex plane can simulate decay from a metastable state. The simplest application of the method to a model in which the approach to equilibrium occurs through transitions over a potential barrier is discussed. The results are compared with direct numerical simulations of the stochastic differential equations describing system's evolution. We have found that the new method is much more efficient from computational point of view than the direct simulations.

Statistics and ProbabilityStochastic partial differential equationGeometric Brownian motionStochastic differential equationContinuous-time stochastic processQuantum stochastic calculusStochastic processLocal timeDiscrete-time stochastic processStatistical physicsCondensed Matter PhysicsMathematicsPhysica A: Statistical Mechanics and its Applications
researchProduct